

Approcci di medicina personalizzata in Oncologia

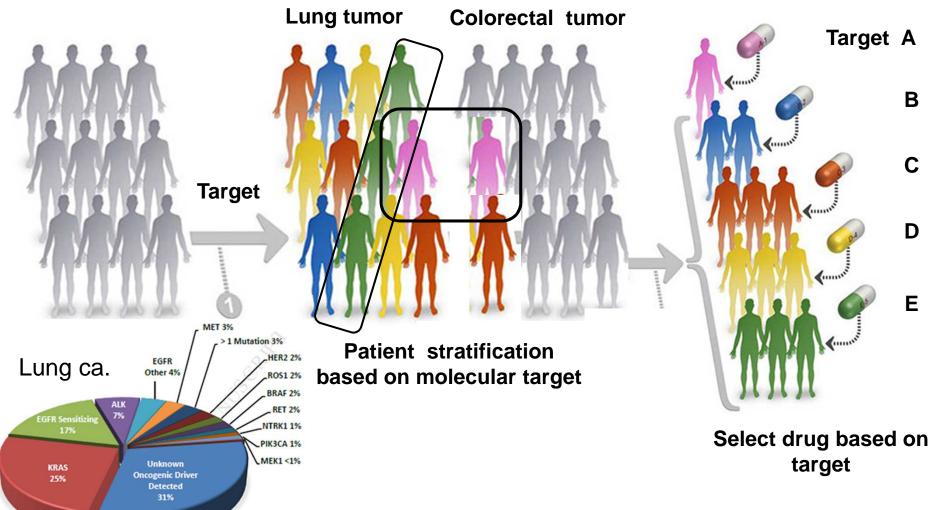
Antonella Isacchi

Director Biotechnology & Kinase Platform Coordinator

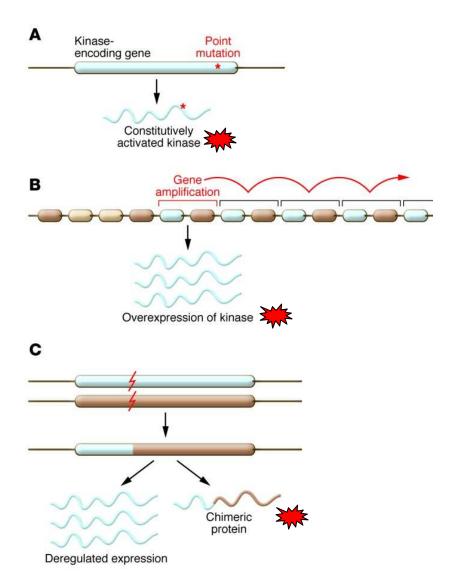
Nerviano Medical Sciences

6 luglio 2018

Nerviano Medical Sciences (NMS)



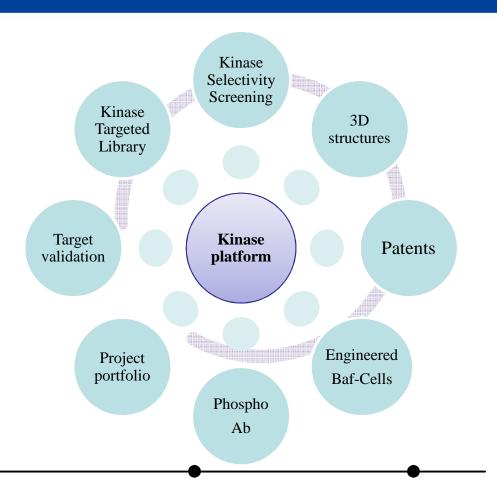
- Nerviano Medical Sciences (NMS) is a researchbased company dedicated to the discovery and development of innovative drugs for the treatment of cancer.
- NMS has a fully integrated R&D expertise from target identification and discovery to preclinical and clinical development, with proven capability to bring innovative oncology drugs to the clinic.
- We cover all operational aspects of preclinical drug development and manufacturing through our affiliates.


Personalized medicine in Oncology

Treatment designed to meet specific characteristics of individual patient's tumor

Kinases are activated by genomic alterations in tumor subsets

Kinases are a large family of enzymes that control many cellular processes


They are very important drug targets because:

- ✓ They become activated in cancers due to genetic alterations: biological relevance
- ✓ They can be inhibited by drugs that bind the conserved ATP pocket: druggability

The Kinase platform

Economy of scale and project growth

- An infrastructure of know how and tools specific for kinases
- A proprietary kinase target libraries of 90,000+ compounds (from 100 chemical classes with extensive patent coverage)
- The platform facilitates the progression of all kinase projects from target to clinical candidate
- It generates economy of scale and secures growth of our project portfolio

Kinase Targeted Library (KTL)

90,000+ proprietary cpds ATP/purine competitors Robust IP position

Kinase Selectivity Screening (KSS)

>100 kinase assays fully automatized > 800,000 IC50s

Kinase 3D Structures

In house protein production and crystallization ca. 500 structures solved

Tumor cell lines

- > 30 kinase dep. cell lines > 500 tumor cell lines with
 - genomic background

M

Entrectinib - A success story

Roche acquired Ignyta

Breakthrough therapy and Priority medicine

designation

2015

Started potentially registrative Phase II trial

2014

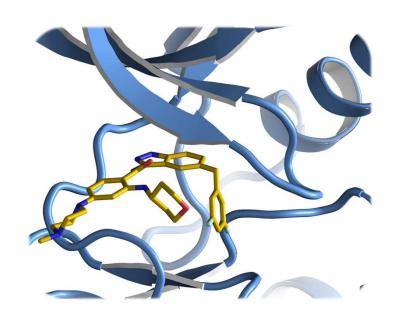
Clinical validation of TRKA as target in CRC

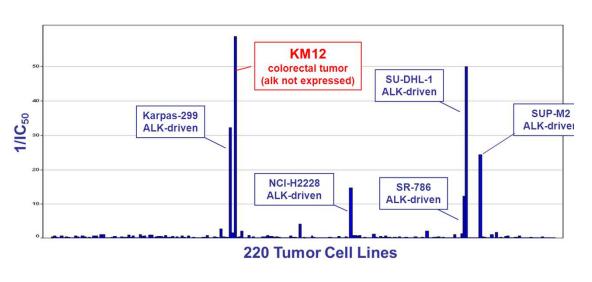
Entrectinib was outlicensed to Ignyta

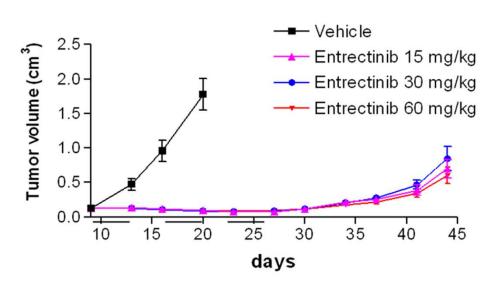
IND approval and start of Phase I study

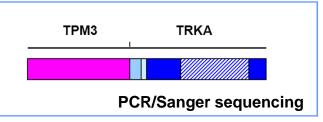
Identification of TRK+ colorectal cancer

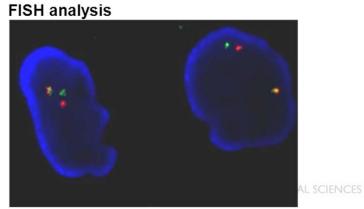
Discovery of entrectinib: TRK, ROS and ALK inhibitor

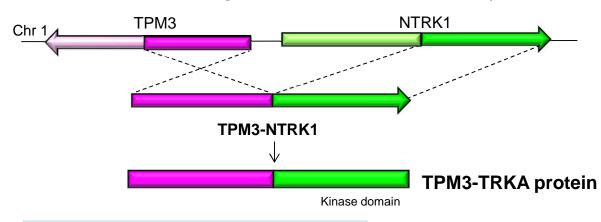

Submission of registrative dossier in preparation

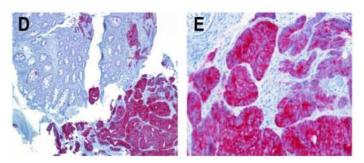

Two different indications:


- ✓ ROS-rearranged NSCLC
- ✓ TRK rearranged tumors


M

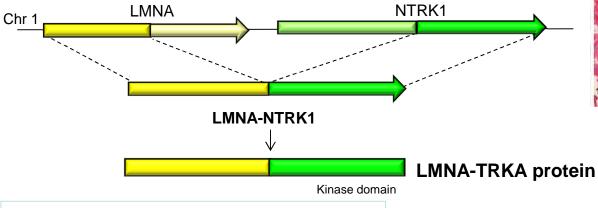

CRC cell line driven by TRKA rearrangement is sensitive to entrectinib

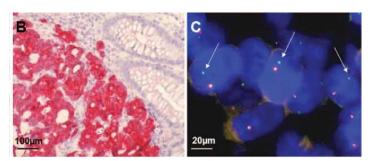




Identification of TRK rearrangements in CRC tumors

TMP3-TRKA rearrangement in colorectal cancer patient





Identified by PCR/Sanger sequencing and IHC

Ardini E et al. Molecular Oncology 2014

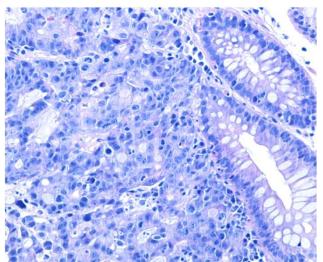
LMNA-TRKA rearrangement in colorectal cancer patient

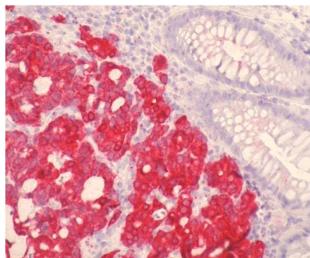
Identified by RACE and IHC

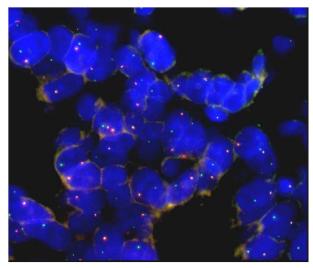
Sartore-Bianchi A et al. J Natl Cancer Inst. 2015

Identification of TRKA as a target in CRC patients

JNCI J Natl Cancer Inst (2016) 108(1): djv306

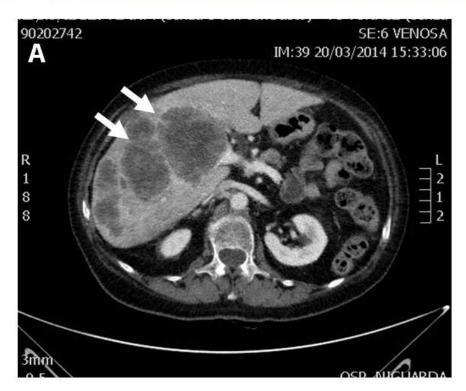

doi:10.1093/jnci/djv306 First published online November 12, 2015 Brief Communication

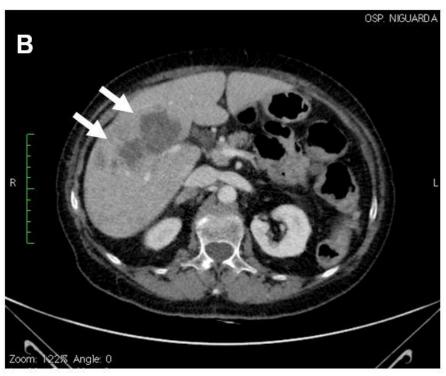

BRIEF COMMUNICATION


Sensitivity to Entrectinib Associated With a Novel LMNA-NTRK1 Gene Fusion in Metastatic Colorectal Cancer

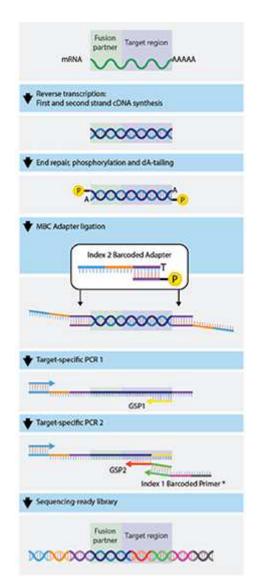
Andrea Sartore-Bianchi, Elena Ardini, Roberta Bosotti, Alessio Amatu, Emanuele Valtorta, Alessio Somaschini, Laura Raddrizzani, Laura Palmeri, Patrizia Banfi, Erica Bonazzina, Sandra Misale, Giovanna Marrapese, Antonella Leone, Rachele Alzani, David Luo, Zachary Hornby, Jonathan Lim, Silvio Veronese, Angelo Vanzulli, Alberto Bardelli, Marcella Martignoni, Cristina Davite, Arturo Galvani, Antonella Isacchi, Salvatore Siena

Affiliations of authors: Niguarda Cancer Center, Ospedale Niguarda Ca' Granda, Milan, Italy (ASB, AA, EV, LP, EB, GM, SV, AV, SS); Nerviano Medical Sciences S.r.l Nerviano, Milan, Italy (EA, RB, AS, LR, PB, AL, RA, AG, AI); Candiolo Cancer Institute – FPO, IRCCS, Candiolo, Torino, Italy (SM, AB); University of Torino, Department of Oncology, Candiolo, Torino, Italy (AB); FIRC Institute of Molecular Oncology (IFOM), Milano, Italy (SM); Ignyta, Inc., San Diego, CA (DL, ZH, JL); Clioss S.r.l. Nerviano, Milan, Italy (MM, CD); Università degli Studi di Milano, Milan, Italy (SS).



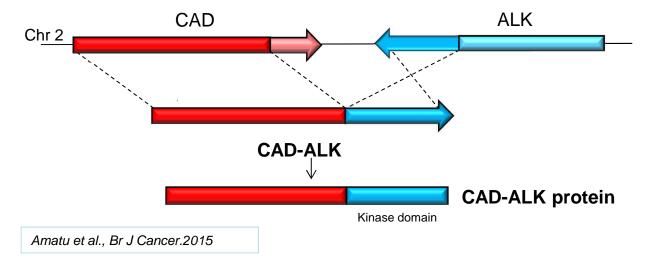


Clinical validation of TRKA as a target in CRC patients

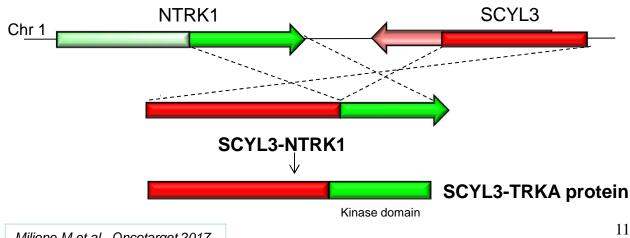


CT Scans Showing the Response to Entrectinib.

The baseline abdominal CT scan of March 2014 shows massive liver involvement with largest lesions originating in hepatic segments 7 and 5 measuring 9 and 8.5 cm in longest diameter, respectively (**Panel A**, arrows). After one cycle of treatment with Entrectinib, objective tumor response as per Response Evaluation Criteria in Solid Tumors (RECIST) criteria was ascertained with the hepatic masses in the same segments measuring 6.5 and 5.3 cm (**Panel B**, arrows).



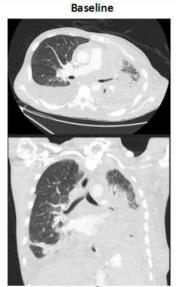
Identification of ALK and TRK rearrangement in CRC by NGS



NGS Archer® FusionPlex®

CAD-ALK rearrangement in colorectal cancer patient

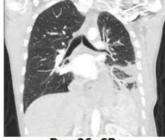
SCYL3-NTRK1 rearrangement in colorectal cancer patient

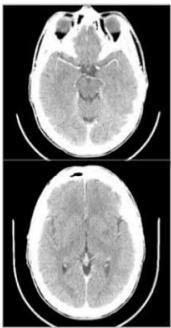

11

NTRK1, 2 and 3 are rearranged in different tumor types

Gene fusion	Cancer type	Authors (year)
NTRK1	7-2	
LMNA-NTRK1	Colorectal	Sartore-Bianchi et al (2016)
	Soft tissue sarcoma	Doebele et al (2015)
	Spitzoid melanomas	Wiesner et al (2014)
	AYA sarcoma	Morosini et al (2015)
	Congenital infantile fibrosarcoma	Wong et al (2015)
TPM3-NTRK1	Colorectal	Lee et al (2015), Créancier et al (2015), Ardini et al (2014)
	Papillary thyroid carcinomas	Bongarzone et al (1989), Butti et al (1995)
	Glioblastoma	Wu et al (2014)
SQSTM1-NTRK1	NSCLC	Farago et al (2015)
NTRK1-SQSTM1	NSCLC	Siena et al (2015)
NFASC-NTRK1	Glioblastoma multiforme	Frattini et al (2013), Kim et al (2014)
BCAN-NTRK1	Glioblastoma multiforme	Kim et al (2014), Frattini et al (2013)
PPL-NTRK1	Thyroid carcinoma	Farago et al (2015)
RFWD2-NTRK1	Large cell neuroendocrine tumour	Fernandez-Cuesta et al (2014)
	(lung)	
CD74-NTRK1	Lung adenocarcinomas	Vaishnavi et al (2013)
MPRIP-NTRK1	Lung adenocarcinomas	Vaishnavi et al (2013)
RABGAP1L-NTRK1	ICC	Ross et al (2014)
TFG-NTRK1	Thyroid carcinomas	Greco et al (1995)
TP53-NTRK1	Spitzoid melanomas	Wiesner et al (2014)
NTRK2	-	7
Unknown-NTRK1	Appendiceal adenocarcinoma	Braghiroli et al (2016)
AFAP1-NTRK2	Low-grade glioma	Stransky et al (2014)
AGBL4-NTRK2	Glioblastoma	Wu et al (2014)
NACC2-NTRK2	Pilocytic astrocytomas	Jones et al (2013)
PAN3-NTRK2	Head and neck squamous cell carcinoma	Wu et al (2014)
QKI-NTRK2	Pilocytic astrocytomas	Jones et al (2013)
TRIM24-NTRK2	Lung adenocarcinoma	Wu et al (2014)
VCL-NTRK2	Glioblastoma	Wu et al (2014)
NTRK3		
ETV6-NTRK3	Glioblastoma	Zhang et al (2013)
	Glioblastoma	Wu et al (2014)
	MASC	Tognon et al (2002), Ito et al (2015), Del Castillo et al (2015)
	Ductal carcinoma	Makretsov et al (2004), Arce et al (2005), Lagree et al (2011),
		Pinto et al (2014)
	Fibrosarcoma	Morerio et al (2004), Punnett et al (2000)
	Congenital mesoblastic nephroma	Watanabe et al (2002)
	Radiation-associated thyroid cancer	Leeman-Neill et al (2014)
	AML	Kralik et al (2011), Eguchi et al (1999), Knezevich et al (1998
	GIST	Brenca et al (2015)
	MASC of salivary gland	Urano et al (2015), Skàlovà et al (2015)
	Papillary thyroid cancer	Leeman-Neill et al (2014), Seungbok Lee et al (2014)
	Colorectal	Hechtman et al (2015)
BTBD1-NTRK3	Glioblastoma	Wu et al (2014)

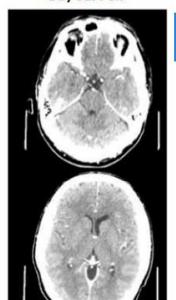
Modified from Amatu etal. ESMO open


Entrectinib clinical efficacy in a TRK positive lung patient



Day 26: - 47% response

Day 26: CR



Day 317: - 79% response

Day 317: CR

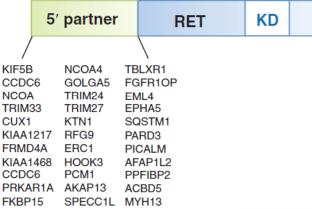
Extracranial Response

Intracranial Response

Remains on entrectinib and clinically progression-free at >12 months

Images courtesy of Farago and Shaw, MGH

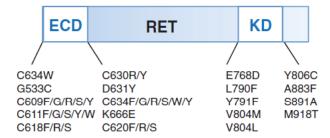
Stop fRETting the Target: Next-Generation RET Inhibitors Have Arrived


Wade T. lams¹ and Christine M. Lovly²

July 2018 CANCER DISCOVERY

RET-driven cancers

RET fusions

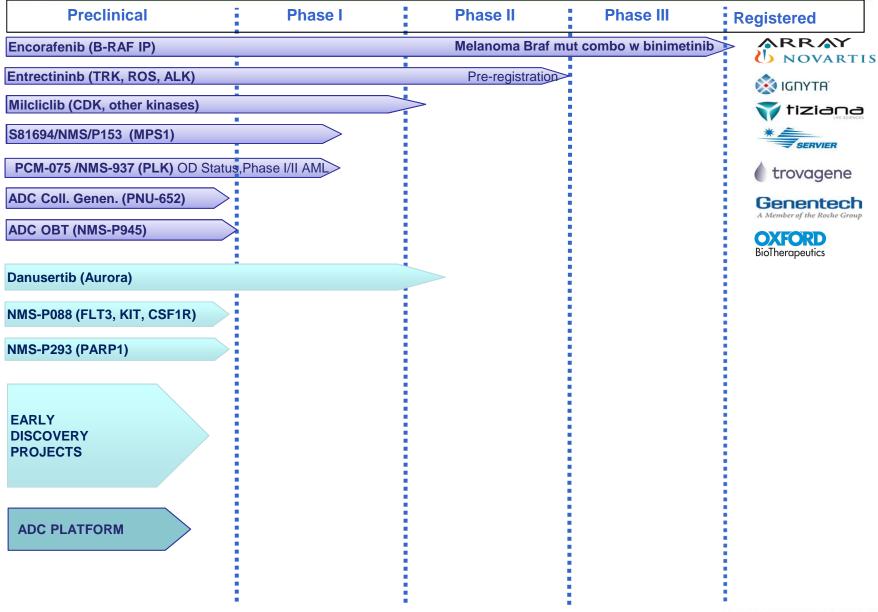

NSCLC (~1%-2%)⁴ PTC (~10%)⁴ Pancreatic cancer (<1%)³

RET mutations

MTC (>60%)⁴
Breast cancer (<1%)³
Endometrial cancer (<1%)³
Merkel cell carcinoma (<1%)³

Colorectal cancer (<1%)³
Sarcoma (<1%)³
Melanoma (<1%)³
Gastric cancer (<1%)³

RET inhibitors


MKIs that target RET

Vandetanib Alectinib
Cabozantinib Ponatinib
RXDX-105 Regorafenib
Lenvatinib Nintedanib
Sorafenib Apatinib
Sunitinib Motesanib
Dovitinib

"Next-generation"
RET inhibitors

BLU-667 LOXO-292

NMS Oncology Project Pipeline

For further information, please visit: www.nervianoms.com